On the adaptive solution of space-time inverse problems with the adjoint method
نویسندگان
چکیده
Adaptivity in space and time is ubiquitous in modern numerical simulations. The large number of unknowns associated with today’s typical inverse problem may run in the millions, or more. To capture small scale phenomena in regions of interest, adaptive mesh and temporal step refinements are required, since uniform refinements quickly make the problem computationally intractable. To date, there is still a considerable gap between the state–of–the–art techniques used in direct (forward) simulations, and those employed in the solution of inverse problems, which have traditionally relied on fixed meshes and time steps. This paper describes a framework for building a space-time consistent adjoint discretization for a general discrete forward problem, in the context of adaptive mesh, adaptive time step models. The discretize–then–differentiate approach to optimization is a very attractive approach in practice, because the adjoint model code may be generated using automatic differentiation (AD). However, several challenges are introduced when using an adaptive forward solver. First, one may have consistency problems with the adjoint of the forward numerical scheme. Similarly, intergrid transfer operators may reduce the accuracy of the discrete adjoint sensitivities. The optimization algorithm may need to be specifically tailored to handle variations in the state and gradient vector sizes. This work shows that several of these potential issues can be avoided when using the Runge–Kutta discontinuous Galerkin (DG) method, an excellent candidate method for h/p-adaptive parallel simulations. Selective application of automatic differentiation on individual numerical algorithms may simplify considerably the adjoint code development. A numerical data assimilation example illustrates the effectiveness of the primal/dual RK–DG methods when used in inverse simulations.
منابع مشابه
Space-time adaptive solution of inverse problems with the discrete adjoint method
Adaptivity in both space and time has become the norm for solving problems modeled by partial differential equations. The size of the discretized problem makes uniformly refined grids computationally prohibitive. Adaptive refinement of meshes and time steps allows to capture the phenomena of interest while keeping the cost of a simulation tractable on the current hardware. Many fields in scienc...
متن کاملEstimation of the Strength of the Time-dependent Heat Source using Temperature Distribution at a Point in a Three Layer System
In this paper, the conjugate gradient method coupled with adjoint problem is used in order to solve the inverse heat conduction problem and estimation of the strength of the time- dependent heat source using the temperature distribution at a point in a three layer system. Also, the effect of noisy data on final solution is studied. The numerical solution of the governing equations is obtained b...
متن کاملInverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions
In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining a new Hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
متن کاملSimultaneous estimation of heat fluxes applied to the wall of a channel with turbulent flow using inverse analysis
The main purpose of this study is to estimate the step heat fluxes applied to the wall of a two-dimensional symmetric channel with turbulent flow. For inverse analysis, conjugate gradient method with adjoint problem is used. In order to calculate the flow field, two equation model is used. In this study, adjoint problem is developed to conduct an inverse analysis of heat transfer in a channel...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011